高效的硫正极催化剂可加速多硫离子转化并抑制穿梭效应,对改善锂硫电池性能起着重要作用。实验室资源化工与能源材料研究部朱庆山研究员团队从理论上总结了六方相砷化镍(NiAs)型到正交相磷化锰(MnP)型结构转变所引起的电子结构变化,及其对硫正极催化剂活性的影响规律。在此基础上,通过调整配位结构进一步优化金属d轨道与多硫离子的成键作用,实现对锂硫催化剂的精确设计。相关工作于1月30日发表在ACS Nano上(DOI:10.1021/acsnano.2c12436)。
锂硫电池因其超高的理论比容量(1675 mAh g-1)和能量密度(2600 Wh kg-1),被认为是下一代储能体系的有力竞争者之一。然而,中间产物多硫离子的溶解扩散导致锂硫电池容量快速衰减,是制约其发展的主要因素,亟需开发有效的催化剂。但对催化活性位点以及催化机理认识的不足却阻碍了硫正极催化剂的设计。
NiAs和MnP均是常用的硫正极催化剂构型,研究团队发现,相比于NiAs型,MnP型的阳离子在垂直于c轴的平面上发生位移后,会使两个共边八面体的中心间距缩短,金属-金属键增强。同时,电子结构随配位环境发生相应变化,金属d轨道的上移或下移将直接影响催化剂和多硫离子的成键作用。基于上述规律,通过掺杂硫原子进一步扭曲[CoP6]八面体,使中心阳离子发生偏移,导致dz2轨道下移和dxz/dyz轨道上移,增强与多硫离子的成键作用。面向实用化的高负载锂硫电池,将高效的硫正极催化剂和单质硫电纺封装在多孔碳纳米纤维内部,形成链状结构的纳米反应器,限域多硫离子的转化反应并进行有效催化,表现出优异的电化学性能。
基于NiAs型和MnP型催化剂的结构调控示意图
沈子涵博士为论文第一作者,张会刚研究员及朱庆山研究员为通讯作者。该工作得到了科技部重点研发大科学装置前沿研究专项(2020YFA0406104),国家自然科学基金面上项目(22075131)和多相复杂系统国家重点实验室(No. MPCS-2021-A)的支持。
(资源化工与能源材料研究部)